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appropriate thickness for measuring the reflection 
intensity in the Laue case, we can expect a large 
change in the ratio of intensity across the absorption 
edge as a function of the temperature factor. 

Since this temperature effect is quite conspicuous, 
we can point out some possible applications on mak- 
ing use of it. For example, we can determine the 
temperature factor B from experiment if we know 
the values of normal- and anomalous-scattering fac- 
tors. The calculated atomic scattering factors are 
reliable and agree with experimental values within 
an error of 1%. The anomalous-scattering factors are 
not so reliable. Near the absorption edge, the 
anomalous-scattering factors depend on the sur- 
roundings of the absorbing atoms and have some fine 
structures corresponding to XANES (X-ray absorp- 
tion near edge structure) and EXAFS (extended X- 
ray absorption fine structure). The values for an iso- 
lated atom calculated by the formula of Parratt & 
Hempstead (1954) are sometimes different from the 
actual values in condensed matter. However, in the 
energy range of more than 100 eV from the absorption 
edge, XANES or EXAFS does not affect very much 
the values of the anomalous-scattering factor. The 
values calculated for isolated atoms in most cases 
agree with experimental ones within an error of 10%. 
Then, if we have precise values of the anomalous- 
scattering factors f '  and f", we can determine the 

temperature factor B by use of the temperature effect. 
The advantage of this approach is that we need only 
one reflection for determination of the temperature 
factor. The temperature factor determined in the pre- 
sent experiment is B = 0.20 A2 at liquid-nitrogen tem- 
perature and B = 0.63 ]k 2 at room temperature, by 
assuming the anomalous-scattering factors obtained 
for an isolated Ge atom. 
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for his assistance in the experiment. This work was 
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Research (57420012). 
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Abstract 

The angular dependence of the X-ray pure-diffraction 
intensity I(O) has been measured in Ge and Si single 
crystals (surface covered with natural oxide films) by 
means of triple-crystal dittractometry. Measurements 
were extended to specimen-crystal angular deviations 
from the Bragg angle of up to 500 Bragg-peak half- 
widths. The I (0)  data at such large deviation angles 
are informative of both static and dynamic Debye- 
Waller-factor variation over crystal depth, the achiev- 
able spatial resolution turning out to be of the order 
of 1 nm. The high spatial resolution of the asymptotic 
Bragg diffraction made it necessary to consider in 
theory the layer-to-layer variation of both the scatter- 
ing characteristics (Debye-Waller factor) and the 

interplanar spacings. A theoretical treatment of the 
problem is presented. Reconstructed Debye-Waller 
factors for the first four atomic planes, counting from 
the crystal-oxide boundary, are 0.3, 0.4, 0.7, 0.7 and 
0"6, 0"6, 0.9, 1 for Ge and Si, respectively. 

I. Introduction 
X-ray diffraction methods play an important role in 
crystal-surface research. Triple-crystal diffractometry 
(TCD) is based upon a highly accurate analysis of 
the specimen-scattered X-ray angular distribution 
(the latter being measured by means of the third, i.e. 
analyzer, crystal). The TCD makes it possible to sep- 
arate the purely diffractive scattering from the accom- 
panying diffuse scattering on crystal-lattice defects 
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(Eisenberger, Alexandropoulos & Platzman, 1972; 
Iida, 1979; Iida & Kohra, 1979; Afanas'ev, 
Koval'chuk, Lobanovich, Imamov, Aleksandrov & 
Melkonyan, 1981). Moreover, a very limited analyzer- 
crystal 'acceptance window' (usually comprising 
several arc s) drastically reduces the background. As 
a result, one is able to measure the diffraction intensity 
at very large specimen-crystal angular deviations AO 
from the Bragg angle, namely, three orders of magni- 
tude above the Bragg-peak half-width. Besides deter- 
mining the diffraction peak amplitude one can estab- 
lish its shape i(A03), where A03 is the analyzer-crystal 
rotation angle. In the case of purely diffractive scatter- 
ing, the angular distribution law i(A03) should remain 
invariable. These circumstances enable one to make 
reliable measurements of pure diffraction at very large 
crystal deviation angles AO when I(AO) is several 
million times below its value I(0), i.e. at exactly the 
Bragg-law angle. 

Diffraction measurements performed deliberately 
very far away from the Bragg-law angle (asymptotic 
Bragg diffraction) provide valuable information on 
crystal perfection in thin surface-adjoining layers and 
near the boundary surfaces (Afanas'ev, Aleksandrov, 
Imamov, Lomov, Zavyalova, 1984; Yakimov, 
Chaplanov, Afanas'ev, Aleksandrov, Imamov & 
Lomov, 1984). The most significant physical feature 
of the diffraction scattering process under these con- 
ditions is, indeed, the fact that, despite the high X-ray 
penetration power, the large-angle diffraction scatter- 
ing phenomena mainly take place in a surface- or 
boundary-adjoining layer, the thickness of which 
becomes less the further one goes from the Bragg 
angle. Indeed, the diffraction partial waves originat- 
ing from perfect-crystal inner atomic layers do cancel 
each other one by one. Hence, X-ray diffractometry 
opens quite unique opportunities of testing the degree 
of structure perfection of the thinnest surface- 
adjoining crystal layers down to single monoatomic 
layers. The application of this method to investigate 
superfinish-surface Ge crystals was reported by 
Yakimov, Chaplanov, Afanas'ev, Aleksandrov, 
Imamov & Lomov (1984). As the measurements were 
carried out under normal conditions and not in 
vacuum, an oxide film appeared on the crystal surface. 
The analysis of the experimental data made it possible 
to estimate the thickness of the crystal-oxide boun- 
dary transition layer as approximately 1 nm. In this 
transition zone, consisting of only 4-5 monoatomic 
layers, the static Debye-Waller factor was found to 
be sharply reduced. The present paper reports results 
of similar measurements for Si monocrystals, simple 
estimates suggesting the presence of a transition layer 
comprising no more than three monolayers. As a 
result, there arose both the need and, on the other 
hand, a real possibility to determine the degree of 
order-disorder for each individual monoatomic layer 
inside the transition sheath. 

In § 2 we treat the theoretical basis of the method. 
§ 3 describes the corresponding experimental tech- 
niques, presents the experimental data and the results 
of data analysis. The analysis involves both the pres- 
ent Si crystal experimental data and the Ge crystal 
experimental results, reported by Yakimov, 
Chaplanov, Afanas'ev, Aleksandrov, Imamov & 
Lomov (1984). The prospects and limitations of the 
present method are discussed in § 3. 

2. Theory 
The diffraction reflection of X-rays at incidence 
angles 0 such that the AO=O-O~ difference 
sufficiently exceeds the Darwin 'table' width 0o (0B 
representing the Bragg angle) is described with simple 
kinematic theory, based upon the common perturba- 
tion theory. In the symmetric reflection case (Fig. 1) 
the reflection coefficient R can be expressed in terms 
of total crystal X-ray scattering amplitude M in the 
following way: 

R =(4 sin 2 0)-lIMI 2. 

The total X-ray scattering amplitude M for a semi- 
infinite crystal is the sum of partial scattering ampli- 
tudes M,,(O), representing X-ray scattering either 
from individual reflecting atomic planes or from 
close-lying plane pairs [as in the case of (111) reflec- 
tion from diamond-like lattice crystals]: 

M(O)=Xh(O)('rr/sinOs) ~ M,,(O) (1) 
n = l  

M,(0) = exp [ -  W,(0) + 2~i(cot 0B AO n + u,,/ao)] 

with Xh(O), exp [-W,,(0)],  u, and ao representing the 
h Fourier component of the elementary cell polariza- 
bility, the nth atomic plane Debye-Waller factor, the 
nth atomic plane displacement from its ideal crystal 
position and the spacing between reflecting planes, 
respectively. 

Accordingly, in the case of symmetric X-ray reflec- 
tion from a crystal, the reflection coefficient is 
expressed as follows: 

R =  [~rXh(O)/2sinOsinOB] M,,(O) . (2) 
n = l  

Fig. 1. X-ray reflection from crystal scheme (8 incidence angle, 
8'= 8-reflection angle, 8, Bragg angle, A8 = 8-8B). 
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The angular dependence of Xh(O) is found from the 
expression 

Xh(O) = Xh F(sin 0A-~)S(0)/F(sin 0B X-~)S(0B) 

with F(sin 0/A), A and S(O) representing the form 
factor, the X-ray wavelength and a geometric struc- 
tural factor, introduced for considering diffraction 
from crystals with more than one atom per unit cell, 
respectively. 

When treating diffraction problems which involve 
only small deviations of the incidence angle 0 from 
the Bragg angle, it is common practice to neglect any 
angular dependence on the part of both the phase 
volume [4sin 2 0] -~ and the polarizability square 
Ixa(0)l substituting in the reflection coefficient for- 
mula (2) the corresponding constant factors 
[4sin 2 0B] -1 and IX.h(OB)I 2. However, in the case of 
asymptotic Bragg diffraction the angular dependences 
of the phase volume, atomic form factor and struc- 
tural factor become essential. When they are taken 
to account, it is convenient to single out the following 
factor: 

[ XhS(O)F(sin O A-1) [ 2. 
A(O) = 2 sin OS(Os)F(sin OB A-l) 

In the case of diffraction reflection with AO ~ Oo 
the diffracted waves are formed over a large number 
of atomic planes. Accordingly, the diffraction reflec- 
tion amplitude can be expressed as an integral instead 
of the sum in (1). The reflection coefficient is then 
represented as follows: 

o i R(O)=A(O)K 2 dzexp[-W(z)+i~o(z)+iqz] 

q = 2K cos 0~ AO, K = 27r/h. 

Here, the function ~(z) describes the atomic plane 
displacement, while e x p [ - W ( z ) ]  represents the 
Debye-Waller-factor variation near the surface. The 
Debye-Waller factor can be expressed as a product 
of a dynamic factor, representing the oscillations of 
atoms around their equilibrium position, and a static 
factor, resulting from irregular atom displacements 
from their positions in the ideal crystal. 

In the ideal crystal there are no atomic-plane dis- 
placements and, consequently, ~0(z)=0. Any 
dynamic Debye-Waller-factor variations can also be 
neglected. Then one arrives at the following simple 
and well known formula 

I( O) = IoA( O)( AO) -2 

with Io a constant factor. 
Consider now the case of sufficiently large AO 

angular differences and of crystals with W(z) and 
~o(z) functions slowly varying in the subsurface (i.e. 
surface-adjoining) region. One can integrate by parts 

the intensity formula, whereby 

? dz exp [ -  W(z) + iq~(z) + iqz] 

= exp [ -  W(0)+ iq~(0)]/iq 

io - dz(e~q~/iq) d/dz{exp[-W(z)+i~oz]}. 

In the asymptotic case AO >> OoL~x/L (with L and Lex 
representing the subsurface-layer inhomogeneity 
scale and extinction depth, respectively), the second 
term in the above formula becomes negligible. Con- 
sequently, the following expression for the intensity 
is obtained: 

I(0) = Io[A(0)/AO 2] exp [ - 2  W(0)]. 

Thus, in the asymptotic case zlO/Oo>>Le,,/L the 
intensity of X-ray diffraction does not depend on 
atomic-plane displacement and is determined by the 
Debye-Waller-factor value on the surface. This 
means that at sufficiently large AO the diffracted wave 
formation occurs in the surface-adjoining region. This 
is so despite the fact that far from the Bragg angle 
the X-ray penetration depth is determined by the 
usual absorption mechanism and exceeds substan- 
tially the extinction depth, which, in turn, can be 
considerably greater than the crystal structure dis- 
turbance depth. It can readily be seen from the 
intensity formula that the thickness Lo of the layer, 
active in the formation of the diffracted wave, is 
related to the deviation AO from the Bragg angle in 
the following simple way: Lo ~-LexOo/AO. 

Thus, the investigation of diffraction at sufficiently 
great A0 permits one to obtain information about 
very thin sub-surface layers. It was shown by 
Afanas'ev, Aleksandrov, Imamov, Lomov & 
Zavyalova (1984) and Yakimov, Chaplanov, 
Afanas'ev, Aleksandrov, Imamov & Lomov (1984) 
that the experimentally achieved values of ,.10 make 
it possible to judge transition layers with a thickness 
corresponding to three to four interplane spacings. 
In this case the continuous crystal structure model is 
no longer applicable, and it becomes necessary to 
consider discrete atomic planes. The following is the 
first discussion of a discrete-type asymptotic Bragg 
diffraction analysis. 

For the sake of simplicity, let us first restrict our 
analysis to the case of zero atomic-plane displace- 
ment. Assume only the first N atomic layers to be 
disturbed, each of them having a given Debye-Waller 
factor defined in the following way: 

exp [ -  W,(0)] 

=~exp[-8w2((uZ)/AZ)sin 2 0] n_< N 
[1 n>N.  

Here (u]) 1/2 represents the nth layer root-mean- 
square displacement. 
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Neglecting the insignificant angular dependence of 
the Debye-Waller factor, i.e. substituting W,(OB) 
instead of W,(O), one easily obtains the following 
expression for the diffraction intensity: 

I(0) = Io[A( 0)/A02] 

x 2 X.  e x p [ i Q ( n - N - 1 ) ] ( 1 - e ' ° )  +1 
n = l  

X,=exp[--W,(OB)], Q=2¢rcotOsAO. 

In fact, this intensity expression is dependent upon 
N parameters X,, the latter characterising the degree 
of structure perfection of each of the atomic planes 
inside the transition-layer thickness Nao. In the case 
of small N this formula for the intensity can be 
directly applied to analyze the diffraction angular 
dependence experimental data. By means of X,  
parameter variations, one can achieve a good agree- 
ment of theory and experiment. When analyzing the 
transition-layer structure it is convenient to consider, 
instead of intensity, the following variable parameter: 

I(AO) = [I(0)A02110A(O)] 

= 2 X,, e x p [ i Q ( n - N - 1 ) ] ( 1 - e ' ° ) + l  

(3) 
For an ideal crystal the magnitude of I(AO) should 
not depend on A0. Any deviation of I(AO) from unity 
is indicative of some crystal structure disturbance 
near the surface and makes it possible to obtain 
information on the transition-layer structure. One 
should note, however, that, mathematically speaking, 
the reconstruction of N parameters X,  for a given 
function I(A 0) is an ambiguous problem. Indeed, if 
some set of parameters X,  represents a solution, then 
the set 

X,  = 1 - XN-,+I (4) 

would also be a solution of the problem. For most 
problems it seems natural to postulate that the Debye- 

Waller factor should monotonously grow away from 
the surface. This requirement limits significantly the 
number of alternative solutions, but even so the prob- 
lem does not become a single-solution one. Indeed, 
there still exist two monotonously growing solutions, 
interconnected by (4). 

A characteristic feature of (3) for parameter aT(A 0), 
obtained on the assumption of atomic-plane displace- 
ment absence, is its symmetry with respect to A0. I n  
this case the expression for the intensity I(0) turns 
out to be asymmetric due to the asymmetry of the 
A(O) coefficient. At experimentally attainable angles 
AO-~2 °, the asymmetry of coefficient A(O) turns out 
to be of the order of 50%. 

The sensitivity of the intensity I(0) to the structure 
of individual atomic planes can be demonstrated with 
the following simple example. The (111) surface of 
real diamond-type-lattice crystals comprises a boun- 
dary 'double layer' (Fig. 2a). Let us imagine, 
however, some other theoretically feasible ideal- 
surface structure depicted in Fig. 2(b). Fig. 2(c) pre- 
sents the diffraction reflection intensity ratio for these 
two cases. The intensity ratio is determined by the 
ratio of the corresponding lattice structure-factor 
squares and is substantially different from unity for 
large deviations AO from the Bragg angle (Fig. 2c). 

The I(AO) parameter proves to be sensitive to 
deformations of the ideal crystal structure. The 
observed symmetry of I(A 0) suggests a lack of surface 
relaxation. However, in general, in the l~resence of 
non-zero atomic plane displacements, the I(AO) func- 
tion is found to be A O asymmetric, the degree of 
asymmetry substantially depending upon atomic 
plane displacement. Fig. 3 illustrates the I(AO) sensi- 
tivity to surface relaxation. The I(AO) curves plotted 
here incorporate the experimentally determined 
Debye-Waller factors of Si for various values of the 
first two interplanar-distance deviations Aal and Aa2 
from the ideal interplanar spacing ao. In Fig. 3, curves 
I, II and III represent the cases Aa~=Aa2=o, 
Aa]/ao= Aa2/ao=-2"5% a n d  Aal/ao= Aa2/ao= 
- 5 % ,  respectively. The data presented in Fig. 3 

I 
f 

21 ~ AO _--_ 

-30 0 30 rnrad 
( a )  (b) (c) 

Fig. 2. Influence of crystal-surface structure upon the reflected 
X-ray intensity in asymptotic Bragg diffraction. (a) ( 111 ) surface 
structure of a diamond-like lattice ideal crystal; (b) another 
theoretically possible surface structure for the same crystal; (c) 
computed reflected X-ray intensity ratio in (a) and (b) as a 
function of the crystal deviation angle A0. 

0-5 

-30 

T 

~ 1 1  II 
I 

AO 
I I to- 
O 30 mrad 

Fig. 3. Influence of surface relaxation on reflected X-ray beam 
intensity, in asymptotic Bragg diffraction conditions. Calculated 
curves I(AO) for different deviations of the first and second 
interplanar distances Aa~ and aa2 (Aal/ao = Aa2/ao = 0, -2.5, 
-5% for curves I, II, III, respectively). 
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demonstrate the ability of the asymptotic Bragg 
diffraction method to detect the displacements of 
several surface-adjoining atomic planes with an 
accuracy of the order of 1%. This is sufficient for 
observing the pure surface relaxation, which accord- 
ing to LEED data (van Hove & Tong, 1979) should 
be several %. 

3. Experimental results 
Measurements of the diffraction scattering intensity 
at angles, essentially differing from the Bragg angle, 
were performed using the triple-crystal X-ray diffrac- 
tometry (TCD) method, described in more detail by 
Eisenberger, Alexandropoulos & Platzman (1972), 
Iida (1979), Iida & Kohra (1979), Afanas'ev, 
Koval'chuck, Lobanovich, Imamov, Aleksandrov & 
Melkonyan (1981) and Aleksandrov, Afanas'ev & 
Melkonyan (1981). The method consists in studying 
the X-ray flux as a function of analyzer-crystal rota- 
tion angle and measuring rocking curves, each usually 
exhibiting three peaks, namely, the main peak, the 
pseudo-peak and the diffusion peak. 

The main peak is due to the diffraction at the 
specimen crystal. The pseudo-peak characterizes 
the reflection curve of the monochromator crystal. 
The diff-use peak is due to X-ray scattering on the 
specimen-crystal lattice defects. The TCD method 
makes it possible to separate these peaks and to study 
the purely diffractive reflection. Fig. 4 shows some 
typical TCD rocking curves. 

The main peak amplitude depends on the intensity 
of X-ray beam reflection from the specimen at some 
angle 0, substantially different from the Bragg angle. 
The main peak shape is determined by Bragg reflec- 
tion from the monochromator crystal and should 
remain invariable over the entire angle range con- 
sidered. Experimentally, the shape of the main peak 
was shown to remain practically the same over the 
whole angular interval ranging up to 6 x 103 arc s. This 
angular interval exceeded the principal main peak 

x l 0 *  

2 imp. S-' 

I 

~4I " (a) 
l . .  

L , AS~ 

6 o;2 - -  

z103 

(~ 0'5 1 rnrad 

Fig. 4. Intensity of crystal-reflected X-ray beam as a function of 
the analyzer-crystal rotation angle ,.103. Ge monocrystal,  111 
reflection, Cu Kt~ radiation, specimen-crystal deviation angle 
/tO = - 0 . 6 m r a d  [in the case of curve (a) with only the main 
peak plotted /tO = -30  mrad]. 

half-width by a factor of almost 103. The main peak 
broadening did not exceed 10% at maximum devi- 
ation from the Bragg angle. The constancy of the 
main peak shape provided unambiguous evidence 
that the main peak was due to pure-diffraction reflec- 
tion. The absence of any diffuse peak in Fig. 4(b) can 
be attributed to the presence of comparatively few 
bulk defects in the specimen. 

At small A0 deviations from the Bragg angle the 
diffraction intensity is due to the effect of very many 
atomic planes and is independent of the transition- 
layer structure. As a result, the I(O)(/tO) 2 product 
should be a constant, which is illustrated by the 
I(O)/t02/Io experimental data, plotted in Fig. 5 for 
Si at small values of A0. 

At large specimen deviation angles/tO the diffrac- 
tion intensity is substantially dependent upon the 
transition-layer structure; 

Plotted in Fig. 6 is I(AO) as a function of the 
specimen deviation angle/tO for Ge and Si crystals 
with superfinish surface treatment (the Ge crystal was 
deep-polishing etched). The specimens were oriented 
in the (111) plane. The measurements were carded 
out using Cu Kc~ radiation. 

0-5 

,I x ( ~ O f  

Rel. 

Units 

• A l l = A i  A If= - G G . , •  - , -  - - 

AO 
15 I I 

0 5 mrad 

Fig. 5. Dependence of parameter l(O)(AO)2/lo upon crystal devi- 
ation angle/tO. Small-angle/tO data. (Si monocrystal, 111 reflec- 
tion, Cu Ka radiation.) 
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Fig. 6. Dependence of parameter _l(/t0) upon crystal deviation 
angle in asymptotic Bragg diffraction conditions. Unfilled and 
filled points indicate the Ge monocrystal and Si monocrystal 
experimental data, respectively (111 reflection, Cu Ko~ radi- 
ation). The theoretical curves were computed according to (3) 
with optimal parameter choice. 
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Table 1. Experimental data analysis 

n = atomic plane number (from the surface); Xn = nth-plane Debye-Waller  factor; .~. = conjugated nth-plane Debye-Waller  factor; 
(u2) 1/2= root-mean-square atom excursion out of  the nth plane. 

Ge Si 

(u2)1/2 -2 1/2 <u.) (u2.) ~/2 <a~.) 1/2 
, x .  +0.05 (h) ~ .  +0.05 (h) x .  +0.05 (h) ,~'. ± 0.05 (h) 
1 0.3 0.9 0"3 0.9 0.6 0.5 0 0 
2 0.4 0.7 0"3 0.9 0.6 0.5 0"1 1"1 
3 0-7 0.4 0.6 0.5 0"9 0"3 0.4 0.7 
4 0.7 0.4 0.7 0.4 1 0 0.4 0"7 

Taking into account the present experimental error 
margins,the observed symmetry of the experimental 
curves I(AO) means that in both Ge and Si 
crystals the atomic-plane displacements within the 
crystal-oxide transition layer were less than 1% of the 
ideal-crystal inter-plane spacings. 

Since the angular scale of the observed I(A0) 
departure from unity comprised several thousand arc 
s, the characteristic thickness of the disturbed layer 
was about 1-1.5 nm. Consequently, the Debye-Waller 
factors had to be determined in the discrete model 
approximation, assuming the disturbance to be local- 
ized in the first four atomic layers. We found the 
Debye-Waller factors by varying the X, parameters 
in (3) until reaching the best possible fit of theory to 
experiment under the requirement of Debye-Waller- 
factor monotonous growth in the direction away from 
the surface, Table 1 presents the results of experi- 
mental data analysis. One should emphasize that the 
Debye-Waller factor for the fourth atomic layer in 
Si turned out to be 1. This means that actually only 
the first two layers were disturbed (since X3 = 0.9 is 
close to 1). In the variation procedure for establishing 
the Debye-Waller factors, their weak A 0 dependence 
was actually taken into account, enabling us to obtain 
unambiguous expressions. However, with the present 
experimental error margins the asymptotic Bragg 
diffraction seems unable to make a choice between 
the thus found Debye-Waller-factor values X, = 
exp [ -  W,(0B)] and the corresponding 'conjugated' 
values Xn = 1 - ) (5- , .  For this reason the 'conjugated' 
factors are also included in Table 1. 

The deviation of Debye-Waller factor from unity 
can be due not only to atom oscillations and displace- 
ments but also to the absence of some of the atoms 
in the atomic planes near the crystal surface. Assum- 
ing the Debye-Waller factors to depend exclusively 
on atom displacements, one can compute the root- 
mean-square atom excursion out of the atomic plane 
for each separate plane. These values also appear in 
Table 1. 

Fig. 7 sketches the schematic structure of the transi- 
tion layer. Here the regions (a), (b) and (c) represent 
the ideal crystal, the transition layer under investiga- 
tion and the invisible-to-X-rays amorphous oxide 
film, respectively. 

The present investigation demonstrates the real 
possibility of using X-ray diffraction for the study of 
crystal structure perfection degree and of subsurface 
atomic plane relaxation at the level of individual 
crystal planes. o 

At present, the most wide-spread surface-study 
technique is indeed the low-energy electron diffrac- 
tion (LEED) method (van Hove & Tong, 1979). This 
method provides reliable information on pure surface 
reconstruction (crystal structure of the surface) and 
on relaxation of the first sub-surface planes. However, 
the method requires complicated mathematical pro- 
cessing of the experimental data and special experi- 
mental techniques for obtaining super-pure surfaces. 
Besides, the LEED application is restricted to no 
more than several surface-adjoining layers, which 
makes it impossible to investigate transition layers at 
the boundary of either two crystals or a crystal and 
an amorphous film. 

The asymptotic Bragg diffraction method makes it 
possible to study not only thin subsurface crystal 
layers but also the structure of an ideal crystal-amor- 
phous film boundary or the structure of a two-crystal 
interboundary, the crystals having substantially 
different interplanar distances. Although the present 
work was actually concerned with the ideal crystal- 
oxide-film transition-layer investigation, the 
asymptotic Bragg diffraction method could also be 
used for super-pure-surface structure analysis. 

, . . . .  (b) 

Fig. 7. Schematic structure of  the transition layer between a semi- 
conductor and a natural oxide film. Roman figures denote the 
order number of  each reflecting plane. Regions (a),  (b) and (c) 
represent the undisturbed crystal, the transition layer and the 
amorphous oxide film, respectively. 
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A b s t r a c t  

Conventional (point) symmetry, antisymmetry, mag- 
netic and complete symmetry are used for the descrip- 
tion of specific features of space, time and some 
crystallographic phenomena. The Onsager principle 
is extended to phenomena described by second-rank 
axial tensors. As a result it is seen that the symmetric 
part of such a tensor changes the sign on time reversal. 
The actions of two operations - time reversal R and 
time inversion T ( T = i ,  'spatial inversion') - are 
compared. It is shown that the equations of crystal 
physics derived by Voigt are in agreement with the 
Onsager principle. 

I n t r o d u c t i o n  

A formal (analytical) apparatus of tensor crystal- 
lography based on the works by Curie, Neumann, 
Voigt and Shubnikov permits one to predict important 
symmetry characteristics for different physical 
phenomena occurring in crystals. The simplest 
example is the pyroeffect which may, although not 
necessarily, be revealed in a polar crystal with a 
special (unique) polar direction. On the other hand, 
symmetry characteristics allow one to state that if the 
symmetry conditions are violated the phenomenon 
under consideration cannot be revealed at all. For 
example, the pyroeffect (in the generally accepted 
sense) in centrosymmetric crystals cannot be detected, 
i.e. it is forbidden. The above statements are based 
on the concepts or" conventional point symmetry using 
orthogonal transformations in three-dimensional 
space (proper and improper rotations, group 03). 

Works on thermodynamics of irreversible processes 
and, first and foremost, the Onsager (1931) work have 

established the additional symmetry requirements for 
some phenomena to be realized. They follow from 
invariance of relationships describing physical 
phenomena with respect to time reversal R (t ~ - t ) .  
Some phenomena (e.g. magneto-electric effect) which 
are allowed from the standpoint of orthogonal spatial 
transformations cannot be physically realized in all 
crystals, the relationships describing these 
phenomena;-generally speaking, do not meet the 
requirements imposed on them by operation R 
(Landau & Lifshitz, 1979). 

Antisymmetry (Shubnikov & Belov, 1964) and 
magnetic symmetry (Sirotin & Shaskol'skaya, 1982) 
provide the allowance for requirements imposed by 
both operations R and the operations inherent in the 
03 group. At the same time, practice shows (see 
below) that the use of magnetic symmetry eliminates 
some difficulties, giving rise to others. This necessi- 
tates the introduction (in addition to symmetry) of 
physical characteristics of crystals under consider- 
ation, i.e. a concept concerning two types of crystals 
- those having a magnetic structure (Landau & Lif- 
shitz, 1960) and those without it. The situation seems 
to be rather peculiar - to judge some, say, magnetic 
properties of a crystal, e.g. piezomagnetism or mag- 
netoelectric effect, on the basis of magnetic symmetry 
of the crystal one should know a priori whether the 
crystal is magnetic or not. 

Therefore, it is very important to establish purely 
symmetric characteristics of physical phenomena in 
crystals which are to be used (after due account of 
crystallophysical relationships in terms of time 
reversal R) in a way similar to that used at the 
beginning of this article. In the following this problem 
is solved within the framework of complete symmetry 
(Zheludev, 1983). 
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